Ebene Algebraische Kurven, Vorlesung 15, vom 01.06.16, Janka Bauer

Beispiel. Wir betrachten $F \in \mathbb{C}[X,Y,Z]_d$, homogen, vom Grad d und die dazugehörige projektive Kurve $\mathcal{C} = \mathcal{V}(F) = \{(x:y:z)|F(x,y,z)=0\}$:

Dann gibt es folgende zwei Bestandteile:

- die affine Kurve $C = \mathcal{C} \cap (\mathbb{P}^2 \setminus \ell_{\infty}) = V(F(x, y, 1))$
- die unendlichen Punkte $C \cap \ell_{\infty}$ (asymptotische Richtungen); mit $f = f_0 + f_1 + \cdots + f_d$ gilt: $F = 0, z = 0 \iff f_d(x, y) = 0$

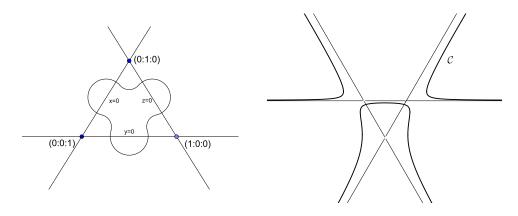


Abbildung 4.1: Zwei Beispiele projektiver Kurven

Alle Begriffe der vorigen Kapitel über affine Kurven lassen sich auf projektive Kurven übertragen:

- $C = C_1 \cup \cdots \cup C_n$ Zerlegung in irreduzible Kurven $C_i = \mathcal{V}(F_i)$, wobei die F_i die irreduziblen Faktoren von F sind
- Reduzierte Gleichung: $Grad(\mathcal{C})$
- Singuläre Punkte, Multiplizität $Mult_P(\mathcal{C})$
- Schnittmultiplizität $I(\mathcal{C}, \mathcal{D}; P)$ ist wohldefiniert

Beispiel. $f = y - x^3$ $F = f^H = yz^2 - x^3$ die Homogenisierung von f

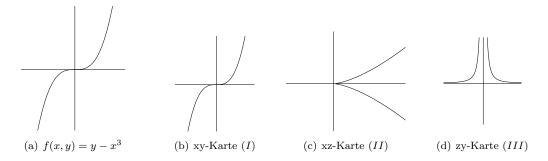


Abbildung 4.2: Die Funktion $f(x,y)=y-x^3$ und ihre Homogenisierung $f^H=F(x,y,z)=yz^2-x^3$ in drei Karten dargestellt.



Abbildung 4.3: Projektive Darstellung aller drei Karten der Homogenisierung $F(x, y, z) = yz^2 - x^3$.

4.5 Satz von Bézout

Satz (Satz von Bézout). Es seien $\mathcal{C}, \mathcal{D} \subset \mathbb{P}^2$ projektive Kurven mit $|\mathcal{C} \cap \mathcal{D}| < \infty$. Dann gilt

$$\sum_{P \in \mathcal{C} \cap \mathcal{D}} I(\mathcal{C}, \mathcal{D}; P) = Grad(\mathcal{C}) * Grad(\mathcal{D})$$

Beweis. Die Formel ist unabhängig vom Koordinatensystem, daher können wir oBdA voraussetzen, dass $(0:1:0) \notin \mathcal{C}, \notin \mathcal{D}, \notin |P,Q|$, wobei |P,Q| die Gerade durch die Punkte $P,Q \in \mathcal{C} \cap \mathcal{D}$ ist.

Projiziere nun die endlich vielen Schnittpunkte von \mathcal{C} und \mathcal{D} aus dem Punkt (0:1:0) auf die

Gerade $\mathcal{V}(Y) \subset \mathbb{P}^2$:

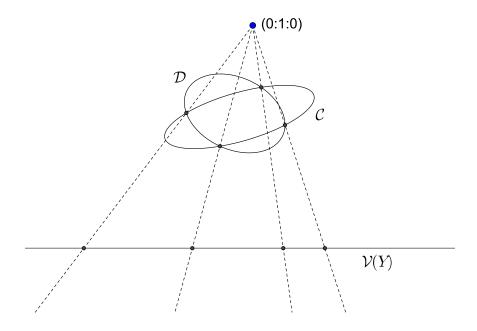


Abbildung 4.4: Projektion der endlich vielen Schnittpunkte von \mathcal{C} und \mathcal{D} auf die Gerade $\mathcal{V}(Y) \subset \mathbb{P}^2$.

Nach der Voraussetzung $(0:1:0)\notin |P,Q|$ haben je zwei verschiedene Punkte $P,Q\in\mathcal{C}\cap\mathcal{D}$ auch verschiedene Projektionspunkte. Sei nun

$$C: F = a_0 y^d + a_1(x, z) y^{d-1} + \dots + a_d(x, z)$$
$$D: G = b_0 y^e + b_1(x, z) y^{e-1} + \dots + b_e(x, z)$$

Dann gilt

$$F(0:1:0) = a_0 \neq 0$$
, $a_i(x,z) \in \mathbb{C}[X,Z]$
 $G(0:1:0) = b_0 \neq 0$, $b_i(x,z) \in \mathbb{C}[X,Z]$

Wie im Affinen gilt auch im projektiven Fall $Ord_{P'}(R_{F,G}) = I(\mathcal{D}; P)$ und somit

$$\sum I(\mathcal{C}, \mathcal{D}; P) = \sum Ord_{P'}(R_{F,G}) = Grad(R_{F,G}) = d \cdot e = Grad(\mathcal{C}) \cdot Grad(\mathcal{D})$$

Beispiel (Rätsel).

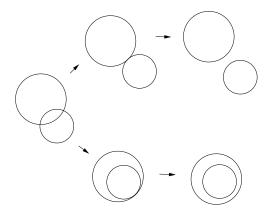


Abbildung 4.5: Die Entwicklung der Schnittpunkte zweier Kreise bei Verschiebungen der Kreise.

Betrachte also

For all the also:
$$f(x,y) = (x-a)^2 + (y-b)^2 - r^2 = 0 \text{ , hier ist } \mathcal{C} \subset \mathbb{A}^2$$

$$F(x,y,z) = (x-az)^2 + (y-bz)^2 - r^2z^2 = 0 \text{ , hier ist } \mathcal{C} \subset \mathbb{P}^2$$

$$\mathcal{C} \cap \ell_{\infty} : \begin{cases} z = 0 \\ x^2 + y^2 = 0 \end{cases}$$

Daraus ergeben sich die zwei Kreispunkte Isaac I = (1:i:0) und Jacob J = (1:-i:0). Kreise sind also Kurven von Grad zwei durch die zwei Kreispunkte. Und zwei Kreise schneiden sich in I & J und in zwei weiteren Punkten.

4.6 Singularitäten und Tangenten

Im Affinen: C=V(f) Kurve mit reduzierter Gleichung Die Menge aller singulären Punkte $\Sigma:=Sing(C)$ ergibt sich aus

$$(a,b) \in \Sigma \Leftrightarrow \begin{cases} \partial_x f(a,b) = 0 \\ \partial_y f(a,b) = 0 \\ f(a,b) = 0 \end{cases}$$

Die Tangente an C im Punkt P = (a, b) ist gegeben durch

$$T_PC$$
: $(x-a)\partial_x f(a,b) + (y-b)\partial_y f(a,b) = 0.$

Proposition. Es sei $\mathcal{C} \subset \mathbb{P}^2$ eine projektive Kurve $\mathcal{C} = \mathcal{V}(F)$.

- 1. Die singulären Punkte von C sind Lösungen der Gleichungen $\partial_x F = \partial_y F = \partial_z F = 0$, das heißt $\Sigma_C = \mathcal{V}(\partial_x F, \partial_y F, \partial_z F)$. NB: Betrachten wir $x\partial_x F + y\partial_y F + z\partial_z F = d \cdot F$ (Euler-Gleichung), dann gilt $\partial_x F(P) = \partial_y F(P) = \partial_z F(P) = 0 \implies F(P) = 0$.
- 2. Ist $P \in \mathcal{C} \setminus \Sigma$, so ist $\mathcal{V}(x\partial_x F(P) + y\partial_y F(P) + z\partial_z F(P))$ projektiver Abschluss von $T_P C$.

Beweis. Ist f(x,y)=0 eine Gleichung für C, dann ist nach der Formel für die Homogenisierung $f^H = F(x, y, z) = z^d f(\frac{x}{z}, \frac{y}{z})$ eine Gleichung für \mathcal{C} . Es gilt

$$\begin{split} &\partial_x F(x,y,z) = z^{d-1} \partial_x f(\frac{x}{z},\frac{y}{z}) \\ &\partial_y F(x,y,z) = z^{d-1} \partial_y f(\frac{x}{z},\frac{y}{z}) \\ &\partial_z F(x,y,z) = dz^{d-1} f(\frac{x}{z},\frac{y}{z}) + z^d \left(-\frac{x}{z^2} \partial_x f(\frac{x}{z},\frac{y}{z}) - \frac{y}{z^2} \partial_y f(\frac{x}{z},\frac{y}{z}) \right). \end{split}$$

Ab jetzt betrachten wir P = (a : b : 1). (Dies darf nach einer Koordinatentrafo immer angenommen werden!) Es gilt

$$\begin{cases} \partial_x F(P) = \partial_x f(a, b) \\ \partial_y F(P) = \partial_y f(a, b) \end{cases}$$
$$\partial_z F(P) = df(a, b) - a\partial_x f(a, b) - b\partial_y f(a, b).$$
 (Euler Formel)

Wir betrachten nun die Tangentengleichung $T_{(a,b)}C$ in (a,b):

$$0 = (x - a)\partial_x f(a, b) + (y - b)\partial_y f(a, b)$$

$$\Leftrightarrow 0 = x\partial_x f(a, b) + y\partial_y f(a, b) - a\partial_x f(a, b) - b\partial_y f(a, b)$$

$$\Leftrightarrow 0 = x\partial_x F(P) + y\partial_y F(P) + \partial_z F(P).$$

Homogenisieren führt zu

$$x\partial_x F(P) + y\partial_y F(P) + z\partial_z F(P) = 0.$$

2.
$$F(x, y, z) = x^4 + y^4 + z^4 = 0$$
 ist glatt
$$\begin{cases}
0 = \partial_x F(x, y, z) = 4x^3 \\
0 = \partial_y F(x, y, z) = 4y^3 \\
0 = \partial_z F(x, y, z) = 4z^3
\end{cases} \rightarrow \begin{cases}
x = 0 \\
y = 0 \\
z = 0
\end{cases}$$

Polare einer Kurve bezüglich $P \in \mathbb{P}^2$ 4.7

Beispiel (Einführendes Beispiel).

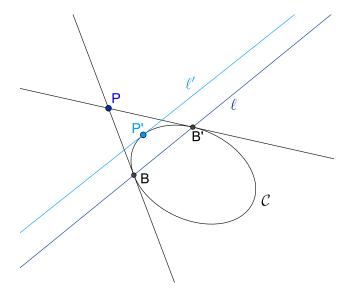


Abbildung 4.6: Polare ℓ von $\mathcal C$ bezüglich P, sowie Polare ℓ' von $\mathcal C$ bezüglich P'.

 \mathcal{C} sei eine Quadrik, $P \in \mathbb{P}^2$ ein Punkt mit $P \notin \mathcal{C}$. Durch P lassen sich zwei Tangenten an \mathcal{C} anlegen, deren Berührpunkte wir mir $B, B' \in \mathcal{C}$ bezeichnen.

Die *Polare* von $\mathcal C$ bezüglich P ist hier die Verbindungsgerde ℓ von B und B'. Ist $P' \in \mathcal C$, so wird die Polare zur Tangente an $\mathcal C$ in P'.

Eine formale Definition der Polaren ist in Definition 4.7 zu finden.

Frage: Wie viele Tangenten kann man hier durch P an C anlegen?

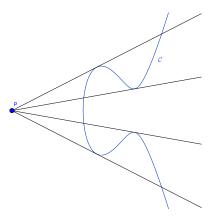


Abbildung 4.7: Anregung: Wie viele Tangenten können durch P an die Kurve $\mathcal C$ angelegt werden?

Aus dem Bild wird ersichtlich, dass es mindestens vier sind. Später sehen wir, dass man sogar sechs Tangenten findet.

Definition. Seien $F \in \mathbb{C}[X, Y, Z]_d$ und P = (a, b, c). Dann ist

$$\nabla_{p}F := a\partial_{x}F(x,y,z) + b\partial_{y}F(x,y,z) + c\partial_{z}F(x,y,z) = "(P \cdot \nabla F)" \in \mathbb{C}[X,Y,Z]_{d-1}.$$

Bemerkung. $\nabla_p F$ kann das Nullpolynom sein. OBdA sei P = (1,0,0), dann gilt

$$\nabla_p F \equiv 0 \Leftrightarrow \partial_x F(x,y,z) \equiv 0$$

$$\Leftrightarrow x \text{ kommt nicht vor, also } F \in \mathbb{C}[Y,Z]_d.$$

Dann ist $\mathcal{V}(F)$ die Vereinigung aller Geraden durch P. ("Stern")

Definition (Polare). Es seien $\mathcal{C} \subset \mathbb{P}^2$ eine Kurve, $P \in \mathbb{P}^2$ und \mathcal{C} nicht ein "Stern" mit Zentrum P. Dann heißt

$$\nabla_P \mathcal{C} = \mathcal{V}(\nabla_P F)$$

Polare von C bezüglich P.

Proposition. C und $\nabla_P C$ haben keine gemeinsamen Komponenten.

Beweis. Sei F die reduzierte Gleichung für \mathcal{C} und oBdA P = (1,0,0).

Angenommen $F = G \cdot H$ mit H irreduzibel und $H | \partial_x F$. Dann ist $\partial_x F = \partial_x G \cdot H + G \cdot \partial_x H$. Falls $H | \partial_x F$ gilt also insbesondere auch $H | G \cdot \partial_x H$.

Es gilt aber H irreduzibel und $Grad(\partial_x H) < Grad(H)$

 $\Rightarrow H|G \Rightarrow H^2|F.$

4 zur Reduziertheit von F.

Folgerung. Der Sazt von Bézout sagt, dass sich \mathcal{C} und $\nabla_P \mathcal{C}$ (mit Vielfachheiten gezählt) in d(d-1) Punkten schneiden. Es ergibt sich also folgende Beziehung zu den Tangenten an \mathcal{C} durch P = (a, b, c):

Polare $\nabla_P \mathcal{C}$: $a\partial_x F + b\partial_y F + c\partial_z F$

1.
$$Q \in \Sigma(\mathcal{C}) \Rightarrow Q \in \nabla_P \mathcal{C}$$

2.
$$Q \in \mathcal{C} \setminus \Sigma(\mathcal{C})$$
, dann gilt $Q \in \nabla_p \mathcal{C} \iff a\partial_x F(Q) + b\partial_y F(Q) + c\partial_z F(Q) = 0 \iff P \in T_Q \mathcal{C}$

Dies besagt, dass die Polare von \mathcal{C} bezüglich P durch alle Punkte $Q \in \mathcal{C}$ mit $P \in T_Q \mathcal{C}$ geht.

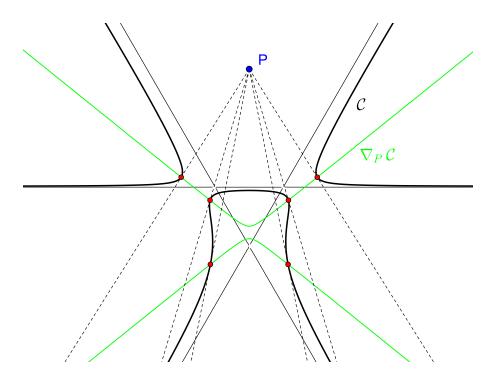


Abbildung 4.8: Die Polare $\nabla_P \mathcal{C}$ von \mathcal{C} bezüglich P geht durch alle Berührpunkte der Tangenten an \mathcal{C} durch P.

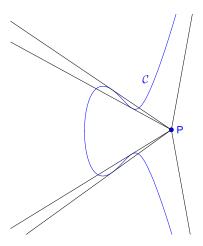


Abbildung 4.9: Wie in Beispiel 4.7 angedeutet, lassen sich nun die sechs Tangenten, die durch P an die Kurve $\mathcal C$ angelegt werden können, bestimmen.